Pandas >> how to Show All Columns and Rows of Dataframe

2021-11-21 Pandas

Table of Contents

[Pandas] How to show all columns and rows

In this article, we will talk about how to show all columns and rows of a DataFrame in Pandas.

Firstly, we prepare a large dataframe that can not be displayed completely.

import pandas as pd

data = []
for i in range(100):
    row = []
    for j in range(30):
        row.append(f"{i}_{j}")
    data.append(row)

cols = [ f"col_{i+1}" for i in range(30) ]

df = pd.DataFrame(data=data, columns=cols)
df

Result
Some rows and columns are omitted because there are too many rows and columns.

	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10	...	col_21	col_22	col_23	col_24	col_25	col_26	col_27	col_28	col_29	col_30
0	0_0	0_1	0_2	0_3	0_4	0_5	0_6	0_7	0_8	0_9	...	0_20	0_21	0_22	0_23	0_24	0_25	0_26	0_27	0_28	0_29
1	1_0	1_1	1_2	1_3	1_4	1_5	1_6	1_7	1_8	1_9	...	1_20	1_21	1_22	1_23	1_24	1_25	1_26	1_27	1_28	1_29
2	2_0	2_1	2_2	2_3	2_4	2_5	2_6	2_7	2_8	2_9	...	2_20	2_21	2_22	2_23	2_24	2_25	2_26	2_27	2_28	2_29
3	3_0	3_1	3_2	3_3	3_4	3_5	3_6	3_7	3_8	3_9	...	3_20	3_21	3_22	3_23	3_24	3_25	3_26	3_27	3_28	3_29
4	4_0	4_1	4_2	4_3	4_4	4_5	4_6	4_7	4_8	4_9	...	4_20	4_21	4_22	4_23	4_24	4_25	4_26	4_27	4_28	4_29
...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...
95	95_0	95_1	95_2	95_3	95_4	95_5	95_6	95_7	95_8	95_9	...	95_20	95_21	95_22	95_23	95_24	95_25	95_26	95_27	95_28	95_29
96	96_0	96_1	96_2	96_3	96_4	96_5	96_6	96_7	96_8	96_9	...	96_20	96_21	96_22	96_23	96_24	96_25	96_26	96_27	96_28	96_29
97	97_0	97_1	97_2	97_3	97_4	97_5	97_6	97_7	97_8	97_9	...	97_20	97_21	97_22	97_23	97_24	97_25	97_26	97_27	97_28	97_29
98	98_0	98_1	98_2	98_3	98_4	98_5	98_6	98_7	98_8	98_9	...	98_20	98_21	98_22	98_23	98_24	98_25	98_26	98_27	98_28	98_29
99	99_0	99_1	99_2	99_3	99_4	99_5	99_6	99_7	99_8	99_9	...	99_20	99_21	99_22	99_23	99_24	99_25	99_26	99_27	99_28	99_29
100 rows × 30 columns

Use display.max_columns option to show all columns

pd.set_option('display.max_columns', None)
df

Result

	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10	col_11	col_12	col_13	col_14	col_15	col_16	col_17	col_18	col_19	col_20	col_21	col_22	col_23	col_24	col_25	col_26	col_27	col_28	col_29	col_30
0	0_0	0_1	0_2	0_3	0_4	0_5	0_6	0_7	0_8	0_9	0_10	0_11	0_12	0_13	0_14	0_15	0_16	0_17	0_18	0_19	0_20	0_21	0_22	0_23	0_24	0_25	0_26	0_27	0_28	0_29
1	1_0	1_1	1_2	1_3	1_4	1_5	1_6	1_7	1_8	1_9	1_10	1_11	1_12	1_13	1_14	1_15	1_16	1_17	1_18	1_19	1_20	1_21	1_22	1_23	1_24	1_25	1_26	1_27	1_28	1_29
2	2_0	2_1	2_2	2_3	2_4	2_5	2_6	2_7	2_8	2_9	2_10	2_11	2_12	2_13	2_14	2_15	2_16	2_17	2_18	2_19	2_20	2_21	2_22	2_23	2_24	2_25	2_26	2_27	2_28	2_29
3	3_0	3_1	3_2	3_3	3_4	3_5	3_6	3_7	3_8	3_9	3_10	3_11	3_12	3_13	3_14	3_15	3_16	3_17	3_18	3_19	3_20	3_21	3_22	3_23	3_24	3_25	3_26	3_27	3_28	3_29
4	4_0	4_1	4_2	4_3	4_4	4_5	4_6	4_7	4_8	4_9	4_10	4_11	4_12	4_13	4_14	4_15	4_16	4_17	4_18	4_19	4_20	4_21	4_22	4_23	4_24	4_25	4_26	4_27	4_28	4_29
...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...
95	95_0	95_1	95_2	95_3	95_4	95_5	95_6	95_7	95_8	95_9	95_10	95_11	95_12	95_13	95_14	95_15	95_16	95_17	95_18	95_19	95_20	95_21	95_22	95_23	95_24	95_25	95_26	95_27	95_28	95_29
96	96_0	96_1	96_2	96_3	96_4	96_5	96_6	96_7	96_8	96_9	96_10	96_11	96_12	96_13	96_14	96_15	96_16	96_17	96_18	96_19	96_20	96_21	96_22	96_23	96_24	96_25	96_26	96_27	96_28	96_29
97	97_0	97_1	97_2	97_3	97_4	97_5	97_6	97_7	97_8	97_9	97_10	97_11	97_12	97_13	97_14	97_15	97_16	97_17	97_18	97_19	97_20	97_21	97_22	97_23	97_24	97_25	97_26	97_27	97_28	97_29
98	98_0	98_1	98_2	98_3	98_4	98_5	98_6	98_7	98_8	98_9	98_10	98_11	98_12	98_13	98_14	98_15	98_16	98_17	98_18	98_19	98_20	98_21	98_22	98_23	98_24	98_25	98_26	98_27	98_28	98_29
99	99_0	99_1	99_2	99_3	99_4	99_5	99_6	99_7	99_8	99_9	99_10	99_11	99_12	99_13	99_14	99_15	99_16	99_17	99_18	99_19	99_20	99_21	99_22	99_23	99_24	99_25	99_26	99_27	99_28	99_29
100 rows × 30 columns

Use display.max_columns option to show specified number of columns

pd.set_option('display.max_columns', 10)
df

Result

	col_1	col_2	col_3	col_4	col_5	...	col_26	col_27	col_28	col_29	col_30
0	0_0	0_1	0_2	0_3	0_4	...	0_25	0_26	0_27	0_28	0_29
1	1_0	1_1	1_2	1_3	1_4	...	1_25	1_26	1_27	1_28	1_29
2	2_0	2_1	2_2	2_3	2_4	...	2_25	2_26	2_27	2_28	2_29
3	3_0	3_1	3_2	3_3	3_4	...	3_25	3_26	3_27	3_28	3_29
4	4_0	4_1	4_2	4_3	4_4	...	4_25	4_26	4_27	4_28	4_29
...	...	...	...	...	...	...	...	...	...	...	...
95	95_0	95_1	95_2	95_3	95_4	...	95_25	95_26	95_27	95_28	95_29
96	96_0	96_1	96_2	96_3	96_4	...	96_25	96_26	96_27	96_28	96_29
97	97_0	97_1	97_2	97_3	97_4	...	97_25	97_26	97_27	97_28	97_29
98	98_0	98_1	98_2	98_3	98_4	...	98_25	98_26	98_27	98_28	98_29
99	99_0	99_1	99_2	99_3	99_4	...	99_25	99_26	99_27	99_28	99_29
100 rows × 30 columns

Use display.max_columns in reset_option to reset to default.

pd.reset_option('max_columns')
df

Result

	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10	...	col_21	col_22	col_23	col_24	col_25	col_26	col_27	col_28	col_29	col_30
0	0_0	0_1	0_2	0_3	0_4	0_5	0_6	0_7	0_8	0_9	...	0_20	0_21	0_22	0_23	0_24	0_25	0_26	0_27	0_28	0_29
1	1_0	1_1	1_2	1_3	1_4	1_5	1_6	1_7	1_8	1_9	...	1_20	1_21	1_22	1_23	1_24	1_25	1_26	1_27	1_28	1_29
2	2_0	2_1	2_2	2_3	2_4	2_5	2_6	2_7	2_8	2_9	...	2_20	2_21	2_22	2_23	2_24	2_25	2_26	2_27	2_28	2_29
3	3_0	3_1	3_2	3_3	3_4	3_5	3_6	3_7	3_8	3_9	...	3_20	3_21	3_22	3_23	3_24	3_25	3_26	3_27	3_28	3_29
4	4_0	4_1	4_2	4_3	4_4	4_5	4_6	4_7	4_8	4_9	...	4_20	4_21	4_22	4_23	4_24	4_25	4_26	4_27	4_28	4_29
...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...
95	95_0	95_1	95_2	95_3	95_4	95_5	95_6	95_7	95_8	95_9	...	95_20	95_21	95_22	95_23	95_24	95_25	95_26	95_27	95_28	95_29
96	96_0	96_1	96_2	96_3	96_4	96_5	96_6	96_7	96_8	96_9	...	96_20	96_21	96_22	96_23	96_24	96_25	96_26	96_27	96_28	96_29
97	97_0	97_1	97_2	97_3	97_4	97_5	97_6	97_7	97_8	97_9	...	97_20	97_21	97_22	97_23	97_24	97_25	97_26	97_27	97_28	97_29
98	98_0	98_1	98_2	98_3	98_4	98_5	98_6	98_7	98_8	98_9	...	98_20	98_21	98_22	98_23	98_24	98_25	98_26	98_27	98_28	98_29
99	99_0	99_1	99_2	99_3	99_4	99_5	99_6	99_7	99_8	99_9	...	99_20	99_21	99_22	99_23	99_24	99_25	99_26	99_27	99_28	99_29
100 rows × 30 columns

Similarly use max_columns in set_option to set number of rows to display.

Show all rows

pd.set_option("max_rows", None)
df

Result

	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10	...	col_21	col_22	col_23	col_24	col_25	col_26	col_27	col_28	col_29	col_30
0	0_0	0_1	0_2	0_3	0_4	0_5	0_6	0_7	0_8	0_9	...	0_20	0_21	0_22	0_23	0_24	0_25	0_26	0_27	0_28	0_29
1	1_0	1_1	1_2	1_3	1_4	1_5	1_6	1_7	1_8	1_9	...	1_20	1_21	1_22	1_23	1_24	1_25	1_26	1_27	1_28	1_29
2	2_0	2_1	2_2	2_3	2_4	2_5	2_6	2_7	2_8	2_9	...	2_20	2_21	2_22	2_23	2_24	2_25	2_26	2_27	2_28	2_29
3	3_0	3_1	3_2	3_3	3_4	3_5	3_6	3_7	3_8	3_9	...	3_20	3_21	3_22	3_23	3_24	3_25	3_26	3_27	3_28	3_29
4	4_0	4_1	4_2	4_3	4_4	4_5	4_6	4_7	4_8	4_9	...	4_20	4_21	4_22	4_23	4_24	4_25	4_26	4_27	4_28	4_29
5	5_0	5_1	5_2	5_3	5_4	5_5	5_6	5_7	5_8	5_9	...	5_20	5_21	5_22	5_23	5_24	5_25	5_26	5_27	5_28	5_29
6	6_0	6_1	6_2	6_3	6_4	6_5	6_6	6_7	6_8	6_9	...	6_20	6_21	6_22	6_23	6_24	6_25	6_26	6_27	6_28	6_29
7	7_0	7_1	7_2	7_3	7_4	7_5	7_6	7_7	7_8	7_9	...	7_20	7_21	7_22	7_23	7_24	7_25	7_26	7_27	7_28	7_29
8	8_0	8_1	8_2	8_3	8_4	8_5	8_6	8_7	8_8	8_9	...	8_20	8_21	8_22	8_23	8_24	8_25	8_26	8_27	8_28	8_29
9	9_0	9_1	9_2	9_3	9_4	9_5	9_6	9_7	9_8	9_9	...	9_20	9_21	9_22	9_23	9_24	9_25	9_26	9_27	9_28	9_29
10	10_0	10_1	10_2	10_3	10_4	10_5	10_6	10_7	10_8	10_9	...	10_20	10_21	10_22	10_23	10_24	10_25	10_26	10_27	10_28	10_29
11	11_0	11_1	11_2	11_3	11_4	11_5	11_6	11_7	11_8	11_9	...	11_20	11_21	11_22	11_23	11_24	11_25	11_26	11_27	11_28	11_29
12	12_0	12_1	12_2	12_3	12_4	12_5	12_6	12_7	12_8	12_9	...	12_20	12_21	12_22	12_23	12_24	12_25	12_26	12_27	12_28	12_29
13	13_0	13_1	13_2	13_3	13_4	13_5	13_6	13_7	13_8	13_9	...	13_20	13_21	13_22	13_23	13_24	13_25	13_26	13_27	13_28	13_29
14	14_0	14_1	14_2	14_3	14_4	14_5	14_6	14_7	14_8	14_9	...	14_20	14_21	14_22	14_23	14_24	14_25	14_26	14_27	14_28	14_29
15	15_0	15_1	15_2	15_3	15_4	15_5	15_6	15_7	15_8	15_9	...	15_20	15_21	15_22	15_23	15_24	15_25	15_26	15_27	15_28	15_29
16	16_0	16_1	16_2	16_3	16_4	16_5	16_6	16_7	16_8	16_9	...	16_20	16_21	16_22	16_23	16_24	16_25	16_26	16_27	16_28	16_29
17	17_0	17_1	17_2	17_3	17_4	17_5	17_6	17_7	17_8	17_9	...	17_20	17_21	17_22	17_23	17_24	17_25	17_26	17_27	17_28	17_29
18	18_0	18_1	18_2	18_3	18_4	18_5	18_6	18_7	18_8	18_9	...	18_20	18_21	18_22	18_23	18_24	18_25	18_26	18_27	18_28	18_29
19	19_0	19_1	19_2	19_3	19_4	19_5	19_6	19_7	19_8	19_9	...	19_20	19_21	19_22	19_23	19_24	19_25	19_26	19_27	19_28	19_29
20	20_0	20_1	20_2	20_3	20_4	20_5	20_6	20_7	20_8	20_9	...	20_20	20_21	20_22	20_23	20_24	20_25	20_26	20_27	20_28	20_29
21	21_0	21_1	21_2	21_3	21_4	21_5	21_6	21_7	21_8	21_9	...	21_20	21_21	21_22	21_23	21_24	21_25	21_26	21_27	21_28	21_29
22	22_0	22_1	22_2	22_3	22_4	22_5	22_6	22_7	22_8	22_9	...	22_20	22_21	22_22	22_23	22_24	22_25	22_26	22_27	22_28	22_29
23	23_0	23_1	23_2	23_3	23_4	23_5	23_6	23_7	23_8	23_9	...	23_20	23_21	23_22	23_23	23_24	23_25	23_26	23_27	23_28	23_29
24	24_0	24_1	24_2	24_3	24_4	24_5	24_6	24_7	24_8	24_9	...	24_20	24_21	24_22	24_23	24_24	24_25	24_26	24_27	24_28	24_29
25	25_0	25_1	25_2	25_3	25_4	25_5	25_6	25_7	25_8	25_9	...	25_20	25_21	25_22	25_23	25_24	25_25	25_26	25_27	25_28	25_29
26	26_0	26_1	26_2	26_3	26_4	26_5	26_6	26_7	26_8	26_9	...	26_20	26_21	26_22	26_23	26_24	26_25	26_26	26_27	26_28	26_29
27	27_0	27_1	27_2	27_3	27_4	27_5	27_6	27_7	27_8	27_9	...	27_20	27_21	27_22	27_23	27_24	27_25	27_26	27_27	27_28	27_29
28	28_0	28_1	28_2	28_3	28_4	28_5	28_6	28_7	28_8	28_9	...	28_20	28_21	28_22	28_23	28_24	28_25	28_26	28_27	28_28	28_29
29	29_0	29_1	29_2	29_3	29_4	29_5	29_6	29_7	29_8	29_9	...	29_20	29_21	29_22	29_23	29_24	29_25	29_26	29_27	29_28	29_29
30	30_0	30_1	30_2	30_3	30_4	30_5	30_6	30_7	30_8	30_9	...	30_20	30_21	30_22	30_23	30_24	30_25	30_26	30_27	30_28	30_29
31	31_0	31_1	31_2	31_3	31_4	31_5	31_6	31_7	31_8	31_9	...	31_20	31_21	31_22	31_23	31_24	31_25	31_26	31_27	31_28	31_29
32	32_0	32_1	32_2	32_3	32_4	32_5	32_6	32_7	32_8	32_9	...	32_20	32_21	32_22	32_23	32_24	32_25	32_26	32_27	32_28	32_29
33	33_0	33_1	33_2	33_3	33_4	33_5	33_6	33_7	33_8	33_9	...	33_20	33_21	33_22	33_23	33_24	33_25	33_26	33_27	33_28	33_29
34	34_0	34_1	34_2	34_3	34_4	34_5	34_6	34_7	34_8	34_9	...	34_20	34_21	34_22	34_23	34_24	34_25	34_26	34_27	34_28	34_29
35	35_0	35_1	35_2	35_3	35_4	35_5	35_6	35_7	35_8	35_9	...	35_20	35_21	35_22	35_23	35_24	35_25	35_26	35_27	35_28	35_29
36	36_0	36_1	36_2	36_3	36_4	36_5	36_6	36_7	36_8	36_9	...	36_20	36_21	36_22	36_23	36_24	36_25	36_26	36_27	36_28	36_29
37	37_0	37_1	37_2	37_3	37_4	37_5	37_6	37_7	37_8	37_9	...	37_20	37_21	37_22	37_23	37_24	37_25	37_26	37_27	37_28	37_29
38	38_0	38_1	38_2	38_3	38_4	38_5	38_6	38_7	38_8	38_9	...	38_20	38_21	38_22	38_23	38_24	38_25	38_26	38_27	38_28	38_29
39	39_0	39_1	39_2	39_3	39_4	39_5	39_6	39_7	39_8	39_9	...	39_20	39_21	39_22	39_23	39_24	39_25	39_26	39_27	39_28	39_29
40	40_0	40_1	40_2	40_3	40_4	40_5	40_6	40_7	40_8	40_9	...	40_20	40_21	40_22	40_23	40_24	40_25	40_26	40_27	40_28	40_29
41	41_0	41_1	41_2	41_3	41_4	41_5	41_6	41_7	41_8	41_9	...	41_20	41_21	41_22	41_23	41_24	41_25	41_26	41_27	41_28	41_29
42	42_0	42_1	42_2	42_3	42_4	42_5	42_6	42_7	42_8	42_9	...	42_20	42_21	42_22	42_23	42_24	42_25	42_26	42_27	42_28	42_29
43	43_0	43_1	43_2	43_3	43_4	43_5	43_6	43_7	43_8	43_9	...	43_20	43_21	43_22	43_23	43_24	43_25	43_26	43_27	43_28	43_29
44	44_0	44_1	44_2	44_3	44_4	44_5	44_6	44_7	44_8	44_9	...	44_20	44_21	44_22	44_23	44_24	44_25	44_26	44_27	44_28	44_29
45	45_0	45_1	45_2	45_3	45_4	45_5	45_6	45_7	45_8	45_9	...	45_20	45_21	45_22	45_23	45_24	45_25	45_26	45_27	45_28	45_29
46	46_0	46_1	46_2	46_3	46_4	46_5	46_6	46_7	46_8	46_9	...	46_20	46_21	46_22	46_23	46_24	46_25	46_26	46_27	46_28	46_29
47	47_0	47_1	47_2	47_3	47_4	47_5	47_6	47_7	47_8	47_9	...	47_20	47_21	47_22	47_23	47_24	47_25	47_26	47_27	47_28	47_29
48	48_0	48_1	48_2	48_3	48_4	48_5	48_6	48_7	48_8	48_9	...	48_20	48_21	48_22	48_23	48_24	48_25	48_26	48_27	48_28	48_29
49	49_0	49_1	49_2	49_3	49_4	49_5	49_6	49_7	49_8	49_9	...	49_20	49_21	49_22	49_23	49_24	49_25	49_26	49_27	49_28	49_29
50	50_0	50_1	50_2	50_3	50_4	50_5	50_6	50_7	50_8	50_9	...	50_20	50_21	50_22	50_23	50_24	50_25	50_26	50_27	50_28	50_29
51	51_0	51_1	51_2	51_3	51_4	51_5	51_6	51_7	51_8	51_9	...	51_20	51_21	51_22	51_23	51_24	51_25	51_26	51_27	51_28	51_29
52	52_0	52_1	52_2	52_3	52_4	52_5	52_6	52_7	52_8	52_9	...	52_20	52_21	52_22	52_23	52_24	52_25	52_26	52_27	52_28	52_29
53	53_0	53_1	53_2	53_3	53_4	53_5	53_6	53_7	53_8	53_9	...	53_20	53_21	53_22	53_23	53_24	53_25	53_26	53_27	53_28	53_29
54	54_0	54_1	54_2	54_3	54_4	54_5	54_6	54_7	54_8	54_9	...	54_20	54_21	54_22	54_23	54_24	54_25	54_26	54_27	54_28	54_29
55	55_0	55_1	55_2	55_3	55_4	55_5	55_6	55_7	55_8	55_9	...	55_20	55_21	55_22	55_23	55_24	55_25	55_26	55_27	55_28	55_29
56	56_0	56_1	56_2	56_3	56_4	56_5	56_6	56_7	56_8	56_9	...	56_20	56_21	56_22	56_23	56_24	56_25	56_26	56_27	56_28	56_29
57	57_0	57_1	57_2	57_3	57_4	57_5	57_6	57_7	57_8	57_9	...	57_20	57_21	57_22	57_23	57_24	57_25	57_26	57_27	57_28	57_29
58	58_0	58_1	58_2	58_3	58_4	58_5	58_6	58_7	58_8	58_9	...	58_20	58_21	58_22	58_23	58_24	58_25	58_26	58_27	58_28	58_29
59	59_0	59_1	59_2	59_3	59_4	59_5	59_6	59_7	59_8	59_9	...	59_20	59_21	59_22	59_23	59_24	59_25	59_26	59_27	59_28	59_29
60	60_0	60_1	60_2	60_3	60_4	60_5	60_6	60_7	60_8	60_9	...	60_20	60_21	60_22	60_23	60_24	60_25	60_26	60_27	60_28	60_29
61	61_0	61_1	61_2	61_3	61_4	61_5	61_6	61_7	61_8	61_9	...	61_20	61_21	61_22	61_23	61_24	61_25	61_26	61_27	61_28	61_29
62	62_0	62_1	62_2	62_3	62_4	62_5	62_6	62_7	62_8	62_9	...	62_20	62_21	62_22	62_23	62_24	62_25	62_26	62_27	62_28	62_29
63	63_0	63_1	63_2	63_3	63_4	63_5	63_6	63_7	63_8	63_9	...	63_20	63_21	63_22	63_23	63_24	63_25	63_26	63_27	63_28	63_29
64	64_0	64_1	64_2	64_3	64_4	64_5	64_6	64_7	64_8	64_9	...	64_20	64_21	64_22	64_23	64_24	64_25	64_26	64_27	64_28	64_29
65	65_0	65_1	65_2	65_3	65_4	65_5	65_6	65_7	65_8	65_9	...	65_20	65_21	65_22	65_23	65_24	65_25	65_26	65_27	65_28	65_29
66	66_0	66_1	66_2	66_3	66_4	66_5	66_6	66_7	66_8	66_9	...	66_20	66_21	66_22	66_23	66_24	66_25	66_26	66_27	66_28	66_29
67	67_0	67_1	67_2	67_3	67_4	67_5	67_6	67_7	67_8	67_9	...	67_20	67_21	67_22	67_23	67_24	67_25	67_26	67_27	67_28	67_29
68	68_0	68_1	68_2	68_3	68_4	68_5	68_6	68_7	68_8	68_9	...	68_20	68_21	68_22	68_23	68_24	68_25	68_26	68_27	68_28	68_29
69	69_0	69_1	69_2	69_3	69_4	69_5	69_6	69_7	69_8	69_9	...	69_20	69_21	69_22	69_23	69_24	69_25	69_26	69_27	69_28	69_29
70	70_0	70_1	70_2	70_3	70_4	70_5	70_6	70_7	70_8	70_9	...	70_20	70_21	70_22	70_23	70_24	70_25	70_26	70_27	70_28	70_29
71	71_0	71_1	71_2	71_3	71_4	71_5	71_6	71_7	71_8	71_9	...	71_20	71_21	71_22	71_23	71_24	71_25	71_26	71_27	71_28	71_29
72	72_0	72_1	72_2	72_3	72_4	72_5	72_6	72_7	72_8	72_9	...	72_20	72_21	72_22	72_23	72_24	72_25	72_26	72_27	72_28	72_29
73	73_0	73_1	73_2	73_3	73_4	73_5	73_6	73_7	73_8	73_9	...	73_20	73_21	73_22	73_23	73_24	73_25	73_26	73_27	73_28	73_29
74	74_0	74_1	74_2	74_3	74_4	74_5	74_6	74_7	74_8	74_9	...	74_20	74_21	74_22	74_23	74_24	74_25	74_26	74_27	74_28	74_29
75	75_0	75_1	75_2	75_3	75_4	75_5	75_6	75_7	75_8	75_9	...	75_20	75_21	75_22	75_23	75_24	75_25	75_26	75_27	75_28	75_29
76	76_0	76_1	76_2	76_3	76_4	76_5	76_6	76_7	76_8	76_9	...	76_20	76_21	76_22	76_23	76_24	76_25	76_26	76_27	76_28	76_29
77	77_0	77_1	77_2	77_3	77_4	77_5	77_6	77_7	77_8	77_9	...	77_20	77_21	77_22	77_23	77_24	77_25	77_26	77_27	77_28	77_29
78	78_0	78_1	78_2	78_3	78_4	78_5	78_6	78_7	78_8	78_9	...	78_20	78_21	78_22	78_23	78_24	78_25	78_26	78_27	78_28	78_29
79	79_0	79_1	79_2	79_3	79_4	79_5	79_6	79_7	79_8	79_9	...	79_20	79_21	79_22	79_23	79_24	79_25	79_26	79_27	79_28	79_29
80	80_0	80_1	80_2	80_3	80_4	80_5	80_6	80_7	80_8	80_9	...	80_20	80_21	80_22	80_23	80_24	80_25	80_26	80_27	80_28	80_29
81	81_0	81_1	81_2	81_3	81_4	81_5	81_6	81_7	81_8	81_9	...	81_20	81_21	81_22	81_23	81_24	81_25	81_26	81_27	81_28	81_29
82	82_0	82_1	82_2	82_3	82_4	82_5	82_6	82_7	82_8	82_9	...	82_20	82_21	82_22	82_23	82_24	82_25	82_26	82_27	82_28	82_29
83	83_0	83_1	83_2	83_3	83_4	83_5	83_6	83_7	83_8	83_9	...	83_20	83_21	83_22	83_23	83_24	83_25	83_26	83_27	83_28	83_29
84	84_0	84_1	84_2	84_3	84_4	84_5	84_6	84_7	84_8	84_9	...	84_20	84_21	84_22	84_23	84_24	84_25	84_26	84_27	84_28	84_29
85	85_0	85_1	85_2	85_3	85_4	85_5	85_6	85_7	85_8	85_9	...	85_20	85_21	85_22	85_23	85_24	85_25	85_26	85_27	85_28	85_29
86	86_0	86_1	86_2	86_3	86_4	86_5	86_6	86_7	86_8	86_9	...	86_20	86_21	86_22	86_23	86_24	86_25	86_26	86_27	86_28	86_29
87	87_0	87_1	87_2	87_3	87_4	87_5	87_6	87_7	87_8	87_9	...	87_20	87_21	87_22	87_23	87_24	87_25	87_26	87_27	87_28	87_29
88	88_0	88_1	88_2	88_3	88_4	88_5	88_6	88_7	88_8	88_9	...	88_20	88_21	88_22	88_23	88_24	88_25	88_26	88_27	88_28	88_29
89	89_0	89_1	89_2	89_3	89_4	89_5	89_6	89_7	89_8	89_9	...	89_20	89_21	89_22	89_23	89_24	89_25	89_26	89_27	89_28	89_29
90	90_0	90_1	90_2	90_3	90_4	90_5	90_6	90_7	90_8	90_9	...	90_20	90_21	90_22	90_23	90_24	90_25	90_26	90_27	90_28	90_29
91	91_0	91_1	91_2	91_3	91_4	91_5	91_6	91_7	91_8	91_9	...	91_20	91_21	91_22	91_23	91_24	91_25	91_26	91_27	91_28	91_29
92	92_0	92_1	92_2	92_3	92_4	92_5	92_6	92_7	92_8	92_9	...	92_20	92_21	92_22	92_23	92_24	92_25	92_26	92_27	92_28	92_29
93	93_0	93_1	93_2	93_3	93_4	93_5	93_6	93_7	93_8	93_9	...	93_20	93_21	93_22	93_23	93_24	93_25	93_26	93_27	93_28	93_29
94	94_0	94_1	94_2	94_3	94_4	94_5	94_6	94_7	94_8	94_9	...	94_20	94_21	94_22	94_23	94_24	94_25	94_26	94_27	94_28	94_29
95	95_0	95_1	95_2	95_3	95_4	95_5	95_6	95_7	95_8	95_9	...	95_20	95_21	95_22	95_23	95_24	95_25	95_26	95_27	95_28	95_29
96	96_0	96_1	96_2	96_3	96_4	96_5	96_6	96_7	96_8	96_9	...	96_20	96_21	96_22	96_23	96_24	96_25	96_26	96_27	96_28	96_29
97	97_0	97_1	97_2	97_3	97_4	97_5	97_6	97_7	97_8	97_9	...	97_20	97_21	97_22	97_23	97_24	97_25	97_26	97_27	97_28	97_29
98	98_0	98_1	98_2	98_3	98_4	98_5	98_6	98_7	98_8	98_9	...	98_20	98_21	98_22	98_23	98_24	98_25	98_26	98_27	98_28	98_29
99	99_0	99_1	99_2	99_3	99_4	99_5	99_6	99_7	99_8	99_9	...	99_20	99_21	99_22	99_23	99_24	99_25	99_26	99_27	99_28	99_29
100 rows × 30 columns

Show specified number of rows

pd.set_option("max_rows", 5)
df

Result

	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10	...	col_21	col_22	col_23	col_24	col_25	col_26	col_27	col_28	col_29	col_30
0	0_0	0_1	0_2	0_3	0_4	0_5	0_6	0_7	0_8	0_9	...	0_20	0_21	0_22	0_23	0_24	0_25	0_26	0_27	0_28	0_29
1	1_0	1_1	1_2	1_3	1_4	1_5	1_6	1_7	1_8	1_9	...	1_20	1_21	1_22	1_23	1_24	1_25	1_26	1_27	1_28	1_29
...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...
98	98_0	98_1	98_2	98_3	98_4	98_5	98_6	98_7	98_8	98_9	...	98_20	98_21	98_22	98_23	98_24	98_25	98_26	98_27	98_28	98_29
99	99_0	99_1	99_2	99_3	99_4	99_5	99_6	99_7	99_8	99_9	...	99_20	99_21	99_22	99_23	99_24	99_25	99_26	99_27	99_28	99_29
100 rows × 30 columns

Reset number of rows to display

pd.reset_option("max_rows")
df

Result

	col_1	col_2	col_3	col_4	col_5	col_6	col_7	col_8	col_9	col_10	...	col_21	col_22	col_23	col_24	col_25	col_26	col_27	col_28	col_29	col_30
0	0_0	0_1	0_2	0_3	0_4	0_5	0_6	0_7	0_8	0_9	...	0_20	0_21	0_22	0_23	0_24	0_25	0_26	0_27	0_28	0_29
1	1_0	1_1	1_2	1_3	1_4	1_5	1_6	1_7	1_8	1_9	...	1_20	1_21	1_22	1_23	1_24	1_25	1_26	1_27	1_28	1_29
2	2_0	2_1	2_2	2_3	2_4	2_5	2_6	2_7	2_8	2_9	...	2_20	2_21	2_22	2_23	2_24	2_25	2_26	2_27	2_28	2_29
3	3_0	3_1	3_2	3_3	3_4	3_5	3_6	3_7	3_8	3_9	...	3_20	3_21	3_22	3_23	3_24	3_25	3_26	3_27	3_28	3_29
4	4_0	4_1	4_2	4_3	4_4	4_5	4_6	4_7	4_8	4_9	...	4_20	4_21	4_22	4_23	4_24	4_25	4_26	4_27	4_28	4_29
...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...
95	95_0	95_1	95_2	95_3	95_4	95_5	95_6	95_7	95_8	95_9	...	95_20	95_21	95_22	95_23	95_24	95_25	95_26	95_27	95_28	95_29
96	96_0	96_1	96_2	96_3	96_4	96_5	96_6	96_7	96_8	96_9	...	96_20	96_21	96_22	96_23	96_24	96_25	96_26	96_27	96_28	96_29
97	97_0	97_1	97_2	97_3	97_4	97_5	97_6	97_7	97_8	97_9	...	97_20	97_21	97_22	97_23	97_24	97_25	97_26	97_27	97_28	97_29
98	98_0	98_1	98_2	98_3	98_4	98_5	98_6	98_7	98_8	98_9	...	98_20	98_21	98_22	98_23	98_24	98_25	98_26	98_27	98_28	98_29
99	99_0	99_1	99_2	99_3	99_4	99_5	99_6	99_7	99_8	99_9	...	99_20	99_21	99_22	99_23	99_24	99_25	99_26	99_27	99_28	99_29
100 rows × 30 columns

Subscribe and be the FIRST reader of our latest articles

* indicates required

Contact us